Mathematics of Computing Final Exam (Max Marks 50, Time 3h)

Indian Statistical Institute, Bangalore

May 2018

NB: (a) E_{TM} is the set of Turing machines $\langle M \rangle$ whose language is the empty language. (b) EQ_{TM} is the set consisting of pairs $\langle M_1, M_2 \rangle$ of Turing machines which recognize the same language. (c) A_{TM} is the set consisting of all $\langle M, w \rangle$ pairs where the Turing machine M accepts the string w. (d) A Vertex Cover of size k of a graph G is a k size subset of the vertex set of G such that every edge has at least one end in it.

- 1. (1x10=10) Assume $A \leq_P B$ i.e., A reduces to B in polynomial time by a deterministic Turing machine. Mention True or False for each:
 - (a) If A is Turing decidable then so is B.
 - (b) If A is Turing recognizable then so B.
 - (c) If A is not Turing decidable then B is not.
 - (d) $B \leq_P A$
 - (e) If A is polynomial time Turing decidable then so is B.
 - (f) If A is NP-complete then so is B.
 - (g) If B has an exponential time algorithm then so does A.
 - (h) If B is both Turing recognizable and co-Turing recognizable, then A is decidable.
 - (i) EQ_{TM} is neither Turing recognizable nor co-Turing recognizable.
 - (j) E_{TM} is Turing recognizable but not co-Turing recognizable
- 2. (3+3+2+2=10)
 - (a) Draw a DFA that accepts all non-negative integer multiples of 6 written in the usual decimal base, with possibly leading zeros. You may use the fact that a number is divisible by 6 iff it is even and divisible by 3.
 - (b) Convert the following regular expression to an NFA and then, convert the NFA to a DFA using subset construction: 0(0|1)*00.
 - (c) State the *pumping lemma* for regular languages.
 - (d) Show that the language $L = \{0^n 1^m | n > m\}$ is not regular.
- 3. (2+2+2+4=10)

- (a) Consider the language $L = \{$ w is a palindrome on $\{0, 1\}$ of odd length $\}$. Give an NPDA for L (graphically or transition table).
- (b) For the language in part (a) give a CFG.
- (c) State the *pumping lemma* for context free languages.
- (d) Prove that the language $L = \{ww | w \text{ is a binary string}\}$ is not context free.
- 4. (4 + 3 + 3 = 10) You may assume, as proved in class, that A_{TM} is Turing recognizable and not Turing decidable.
 - (a) We learnt that $A_{TM} \leq_M Th(N, +, \times)$. Given that proof systems are sound and that proofs are verifiable, show that $Th(N, +, \times)$ is Turing recognizable.
 - (b) From the result in part (a) show that there exist some statements in $Th(N, +, \times)$ that are true, however not provable.
 - (c) We know that if $A \leq_m B$, then if A is not Turing recognizable then B is not Turing recognizable. Use this to show that EQ_{TM} is not Turing recognizable.
- 5. (1+2+3+4=10)
 - (a) We say that if a problem has a certificate of membership that is checkable in deterministic polynomial time, then the problem is in NP. How is this equivalent to saying that the problem is decided by non-deterministic polynomial time Turing machine?
 - (b) Define the terms *NP*-Hard and *NP*-Complete.
 - (c) The language CLIQUE contains all pairs $\langle G, k \rangle$ where the graph G has k vertices which form a complete subgraph. Let G have n vertices. Prove or disprove this claim: Since the number of ways of choosing k vertices from n is no more than $O(n^k)$, we can check all of them, and it takes no more than $O(n^k)$ time, which is polynomial in n; thus CLIQUE is in P.
 - (d) Let $S = \{a_1, a_2, ..., a_n\}$ be a set of n elements. Let $X = \{s_1, s_2, ..., s_m\}$ be a collection of m subsets of S. As an example s_1 may be $\{a_1, a_3, a_5, a_6\}$. For a given S and X we are interested in a subset H of S so that H has a non-empty intersection with each s_i in X. Such a set H is called a *Hitting Set* for the given S, X pair. Show that the problem of determining if a given S, X pair has a hitting set of a given size k is NP-Complete. For the reduction use the fact that Vertex Cover is NP-Complete.